• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

Signals from distant stars connect optical atomic clocks across Earth for the first time

October 11, 2020 by Editor

Using radio telescopes observing distant stars, scientists have connected optical atomic clocks on different continents.

The results were published in the scientific journal Nature Physics by an international collaboration between 33 astronomers and clock experts at the National Institute of Information and Communications Technology (NICT, Japan), the Istituto Nazionale di Ricerca Metrologica (INRIM, Italy), the Istituto Nazionale di Astrofisica (INAF, Italy), and the Bureau International des Poids et Mesures (BIPM, France).

The BIPM in Sèvres near Paris routinely calculates the international time recommended for civil use (UTC, Coordinated Universal Time) from the comparison of atomic clocks via satellite communications.

However, the satellite connections that are essential to maintaining a synchronized global time have not kept up with the development of new atomic clocks: optical clocks that use lasers interacting with ultra-cold atoms to give a very refined ticking.

“To take the full benefit of optical clocks in UTC, it is important to improve worldwide clock comparison methods.” said Gérard Petit, physicist at the Time Department at BIPM.

In this new research, highly-energetic extragalactic radio sources replace satellites as the source of reference signals.

The group of SEKIDO Mamoru at NICT designed two special radio telescopes, one deployed in Japan and the other in Italy, to realize the connection using the technique of Very Long Baseline Interferometry (VLBI).

These telescopes are capable of observations over a large bandwidth, while antenna dishes of just 2.4 meter diameter keep them transportable.

“We want to show that broadband VLBI has potential to be a powerful tool not only for geodesy and astronomy, but also for metrology.” commented SEKIDO.

To reach the required sensitivity, the small antennas worked in tandem with a larger 34 m radio telescope in Kashima, Japan during the measurements taken from October 14 2018 to February 14 2019.

For the Kashima radio telescope, these were among the last observations before the telescope was irreparably damaged by typhoon Faxai in September 2019.

The goal of the collaboration was to connect two optical clocks in Italy and Japan, separated by a baseline distance of 8700 km.

These clocks load hundreds of ultra-cold atoms in an optical lattice, an atomic trap engineered with laser light.

The clocks use different atomic species: ytterbium for the clock at INRIM and strontium at NICT. Both are candidates for a future redefinition of the second in the International System of Units (SI).

“Today, the new generation of optical clocks is pushing to review the definition of the second. The road to a redefinition must face the challenge of comparing clocks globally, at the intercontinental scale, with better performances than today,” said Davide Calonico, head of the Quantum Metrology and Nanotechnology division and coordinator of the research at INRIM.

The connection is possible by observing quasars billions of light-years away: radio sources powered by black holes weighing millions of solar masses, but so distant that they can be considered fixed points in the sky.

The telescopes aim at a different star every few minutes to compensate for the effects of the atmosphere.

“We observed the signal not from satellites, but from cosmic radio sources,” commented IDO Tetsuya, director of the Space-Time Standards Laboratory and coordinator of the research at NICT.

“VLBI may allow us in Asia to access the UTC relying on what we can prepare by ourselves.” IDO added.

Antennas like the transportable ones used in these measurements can be installed directly at the laboratories developing optical clocks around the world.

According to SEKIDO, “a global optical clock network connected by VLBI may be realized by collaboration between the international communities of metrology and geodesy, just like the broadband VLBI network of the VLBI Global Observing System (VGOS) has already been established,” while Petit commented: “waiting for long-distance optical links, this research shows that there is still to gain from radio links, where VLBI with transportable antennas can complement the Global Navigation Satellite Systems and telecommunication satellites.”

Besides improving international timekeeping, such an infrastructure also opens new ways to study fundamental physics and general relativity, to explore variations of Earth’s gravitational field, or even the variation of fundamental constants underlying physics.

Federico Perini, coordinator of the research at INAF, commented “We are proud to have been part of this collaboration helping to achieve such a big step forward in developing a technique which, using the most distant radio sources in the Universe, makes possible the measurement of the frequencies generated by two of the most accurate clocks here on the Earth.”

Calonico concludes “Our comparison using VLBI gives a new perspective to improve and investigate new methods for clock comparisons, also looking at the contamination between different disciplines.”

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • Astronomers' success: seven new cosmic masers
    31
    Astronomers' success: seven new cosmic masersThe publication is the result of many months of observations of radiation coming from the plane of the Milky Way, namely from the spiral arms of our galaxy, where a lot of matter, dust and gas accumulate. It is under such conditions that massive stars are born.  Complex process At…
    Tags: radio, time, sources, telescope, telescopes, news, space

Filed Under: News, Space Tagged With: atomic, clocks, collaboration, international, japan, optical, radio, telescopes

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in