• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

Camel-fur-inspired technology harnesses insulation and evaporation to keep products cool

November 15, 2020 by Editor

Scientists have developed a bilayer passive cooling technology inspired by the way camels stay cool in the hot desert sun.

The technology’s bottom hydrogel layer acts like a camel’s sweat glands, lowering the temperature through evaporating water, whereas the top aerogel layer functions like fur, insulating against outside heat while letting water vapor pass through.

The research, published November 11 in the journal Joule, demonstrates that the design keeps products cool five times longer than conventional single-layer approaches.

“While previous passive cooling research focused on mimicking the evaporation from sweat glands in mammals, in this work we identified the crucial role of the fur insulation,” says Jeffrey Grossman, head of the Department of Materials Science and Engineering at Massachusetts Institute of Technology and a senior author of the study.

“By mimicking the dual fur/gland system in camels, we designed an evaporation-insulation bilayer, which, like for the camel, allows for a significant extension of the passive evaporative cooling time for the same amount of water consumption.”

As the climate warms and technology becomes increasingly necessary to keep buildings cool and preserve food and pharmaceuticals, scientists are in hot pursuit of passive cooling methods that do not require external energy sources.

Although approaches based on evaporation from hydrogels present one of the most promising passive cooling solutions, they tend to require significant amounts of water and have limited potential for long-term use.

By thinking about these issues in terms of desert-animal physiology, Grossman and colleagues realized that a key component was missing from existing evaporative cooling technologies.

“Zoologists have reported that a shorn camel has to increase the water expenditure for sweating by 50% in the daytime compared to the one with a natural woolly coat,” says Grossman.

“And so, to minimize water loss while preserving the cooling power of evaporation, and therefore extend the cooling capabilities over longer periods of times, we turned our attention to nature.”

To mimic a camel’s fur layer, the researchers synthesized highly porous, hydrophobic silica aerogels with about half the thermal conductivity of air, then combined them with sweat gland-mimicking hydrogels.

The team then tested a sample of the resulting bilayer in an enclosed chamber with controlled ambient temperature and relative humidity, demonstrating that the sample could maintain a temperature 7 degrees Celsius lower than its surroundings.

A cooling technology with only the hydrogel layer could maintain a slightly lower temperature, but the bilayer technology lasted far longer.

A 5-millimeter layer of hydrogel covered by a 5-millimeter aerogel maintained its temperature for 200 hours before its moisture was depleted and it needed to be recharged with water, whereas a hydrogel layer alone persisted for only 40 hours.

Because of its ability to keep objects cool for an extended period of time without electricity, the bilayer passive cooling technology could enable distributors to ship, transport, and temporarily store products without air conditioning – a service that would be especially useful in regions of the world where electricity remains scarce.

“This technology could also allow for significant miniaturization of conventional evaporation technologies, as it provides move effective cooling for longer times for any given amount of water provided,” says Grossman. “It can also potentially assist thermal management of buildings where the demand for cooling has rapidly increased.”

However, the aerogel layer that gives the technology its edge currently limits its ability to be scaled up for widespread use.

“While the material cost of our aerogel is low, the manufacture cost is currently the bottleneck for scalability due to a critical-point drying step,” says Grossman, noting that one of the coauthors, Elise Strobach, has co-founded a start-up company to pursue scalable production of transparent aerogels for building window applications.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • Making seawater drinkable in minutes
    32
    Making seawater drinkable in minutesAccording to the World Health Organization, about 785 million people around the world lack a clean source of drinking water. Despite the vast amount of water on Earth, most of it is seawater and freshwater accounts for only about 2.5% of the total. One of the ways to provide clean…
    Tags: water, news, technology

Filed Under: News, Technology Tagged With: aerogel, bilayer, cool, evaporation, grossman, hydrogel, layer, longer, passive, technology, temperature, water

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in