• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

Rules of the road: the navigational ‘strategies’ of bacteria in motion

May 14, 2021 by Editor

Bacteria that move around live on the edge. All the time. Their success, be it in finding nutrients, fending off predators or multiplying depends on how efficiently they navigate through their confining microscopic habitats.

Whether these habitats are in animal or plant tissues, in waste, or in other materials.

In a recent paper published in PNAS, a team of researchers led by McGill University, has described a number of factors affecting how five, very different, species of bacteria search and navigate through varied microfluidic environments which pose various decisional challenges.

This increased understanding of the bacterial space searching and navigational “strategies” has implications for everything from diagnosing infectious diseases and maintaining human health, to the development of devices for everything from genomics to bio computation, as well as for a wide range of agricultural, industrial, and environmental activities.

The researchers filmed the movements of five species of bacteria navigating through a range of microfluidic settings – from fairly open spaces (plazas) to complicated meandering channels.

This allowed them to better understand the factors involved in the navigational ‘strategies’ of bacteria as they search for available space.

Q & A with senior author Professor Dan Nicolau from McGill University’s Department of Bioengineering

Q: What ‘strategies’ do bacteria use to navigate through space?

A: We found, by observing bacterial movement through microfluidic channels of different shapes and sizes, that bacteria use vastly different ‘algorithms’ for searching through space than we had expected. These algorithms are not, as we thought, governed by the complexity of bacterial architecture – but rather by the spaces the bacteria are investigating.

We found that a lot depends on the shape and the size of the channel that the bacteria are navigating. In general, bacteria don’t waste time on U-turns, unless they have no choice due to the tightness of the channels.

Although the natural “movement technology” used by bacteria are very different from species to species, their space searching strategies are determined by their geometrical ratios, for instance cell width vs. length of flagella (the whip-like structures protruding from cell body that some bacteria use for locomotion).

Despite their differences, all the species we looked at were able to successfully negotiate through tight (relative to their sizes) paths, and certainly through larger ones. But in medium-sized meandering channels, bacteria cannot rely on the constricting walls to guide them, nor can they move totally freely.

As a consequence, they become ‘confused’ about what search method they should use and they are trapped, regardless of what algorithms they are programmed to use.

Q: How can this information be used?

A: In terms of diseases, whether in humans, animals, or plants, this information will help us better understand better how bacteria colonise confining spaces.

This is useful for various reasons, such as focusing attention on how certain animal species may be more exposed to infections by certain bacterial species, due to their particular spacial navigation and exploration strategies.

For bacterial genomics, which are important in the understanding, treatment and prevention of the spread of infectious diseases, understanding the ‘algorithms’ used by different species of bacteria will make it easier to design geometries that trap only a single species from samples collected in water, human fluids, etc. that may contain a whole range of bacterial populations.

For bio computation – that is, building computers powered by bacteria – it is crucial to know what algorithms the bacteria use for motion in order to build computers that do not make errors.

Main image: By observing 5 different species of bacteria moving through a variety of microfluidic channels, the researchers discovered that bacteria navigated through the spaces not based on their own sizes or proportions, as the researchers had imagined, but instead depending on the kinds of spaces they were navigating through. Credit: McGill University.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • Three bacterial strains discovered on space station may help grow plants on Mars
    34
    Three bacterial strains discovered on space station may help grow plants on MarsIn order to withstand the rigors of space on deep-space missions, food grown outside of Earth needs a little extra help from bacteria. Now, a recent discovery aboard the International Space Station (ISS) has researchers may help create the 'fuel' to help plants withstand such stressful situations. Publishing their findings…
    Tags: space, species, biology, bacterial, bacteria
  • New species of bacterium eats parasitic worms
    31
    New species of bacterium eats parasitic wormsA new species of bacterium, Chryseobacterium nematophagum, has been found to digest its hosts – roundworm parasites – from the inside out. The findings, which are presented in the open access journal BMC Biology, suggest that the bacteria may potentially be used in future, to control roundworm infections in animals,…
    Tags: bacteria, species, bacterial
  • The incredible bacterial ‘homing missiles’ that scientists want to harness
    31
    The incredible bacterial ‘homing missiles’ that scientists want to harnessImagine there are arrows that are lethal when fired on your enemies yet harmless if they fall on your friends. It's easy to see how these would be an amazing advantage in warfare, if they were real. However, something just like these arrows does indeed exist, and they are used…
    Tags: bacteria, biology

Filed Under: Biology, Features Tagged With: algorithms, bacteria, bacterial, space, species, strategies

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in