• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

Scientists shed light on the mechanism of photoactivation of the orange carotenoid protein

May 20, 2021 by Editor

Exposure to light is compulsory for photosynthetic organisms for the conversion of inorganic compounds into organic ones. However, if there is too much solar energy, the photosystems and other cell components could be damaged.

Thanks to special protective proteins, the over-excitation is converted into heat – in the process called non-photochemical quenching.

The object of the published study, OCP, was one of such defenders. It was first isolated in 1981 from representatives of the ancient group of photosynthetic bacteria – yanobacteria. OCP comprises two domains forming a cavity, in which a carotenoid pigment is embedded.

“When light is absorbed by the carotenoid molecule, OCP can change from an inactive orange to an active red form. This process is multi-stage and follows a complex hierarchy of events.

We showed the asynchrony of these changes in previous work, but the mechanism of the very first stage of OCP activation, associated with the breakage of hydrogen bonds between the carotenoid and the protein, remained unsolved,” says Dr Eugene Maksimov, Senior Researcher of the Federal Research Centre of Biotechnology of RAS.

Scientists conducted a comprehensive study using methods of structural biology, biochemistry, spectroscopy, and quantum chemistry.

Researchers from the Federal Research Centre for Biotechnology, Russian Academy of Sciences, have created a “super orange” version of OCP with unique spectral and structural properties and determined its crystal structure with the highest spatial resolution among all OCP-related proteins.

The analysis of the obtained data revealed that a charge separation reaction could occur along the hydrogen bond between the carotenoid molecule and one of the amino acid residues of the protein as a result of the absorption of a photon in OCP.

In darkness, this hydrogen bond stabilizes the orange OCP state, but upon illumination, it breaks quickly due to the redistribution of the electron density in the carotenoid molecule.

As a result, the protein becomes a dipole, which leads to a change in its entire structure. This photochemical reaction has been described for carotenoids for the first time.

“Our discovery will allow controlling the process of OCP activation and its spectral properties. Consequently, this can lead to the creation of new light-controlled systems and ‘smart’ biocompatible materials based on photoactive proteins for optogenetics and functional imaging,” says Dr. Nikolai Sluchanko, Leading Researcher of the Federal Research Center of Biotechnology of RAS.

Main image by Marc Pascual from Pixabay

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Filed Under: Biology, Health Tagged With: activation, biotechnology, centre, change, federal, hydrogen, light, molecule, orange, process, properties, protein, proteins, scientists, spectral, structural, study

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in