• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

The importance of good neighbors in catalysis

November 4, 2020 by Editor

Are you affected by your neighbours? So are nanoparticles in catalysts. New research from Chalmers University of Technology, Sweden, published in the journals Science Advances and Nature Communications, reveals how the nearest neighbours determine how well nanoparticles work in a catalyst.

“The long-term goal of the research is to be able to identify ‘super-particles’, to contribute to more efficient catalysts in the future. To utilise the resources better than today, we also want as many particles as possible to be actively participating in the catalytic reaction at the same time,” says research leader Christoph Langhammer at the Department of Physics at Chalmers University of Technology.

Imagine a large group of neighbours gathered together to clean a communal courtyard. They set about their work, each contributing to the group effort. The only problem is that not everyone is equally active.

While some work hard and efficiently, others stroll around, chatting and drinking coffee. If you only looked at the end result, it would be difficult to know who worked the most, and who simply relaxed.

To determine that, you would need to monitor each person throughout the day. The same applies to the activity of metallic nanoparticles in a catalyst.

The hunt for more effective catalysts through neighbourly cooperation

Inside a catalyst several particles affect how effective the reactions are. Some of the particles in the crowd are effective, while others are inactive. But the particles are often hidden within different ‘pores’, much like in a sponge, and are therefore difficult to study.

To be able to see what is really happening inside a catalyst pore, the researchers from Chalmers University of Technology isolated a handful of copper particles in a transparent glass nanotube. When several are gathered together in the small gas-filled pipe, it becomes possible to study which particles do what, and when, in real conditions.

What happens in the tube is that the particles come into contact with an inflowing gas mixture of oxygen and carbon monoxide. When these substances react with each other on the surface of the copper particles, carbon dioxide is formed.

It is the same reaction that happens when exhaust gases are purified in a car’s catalytic converter, except there particles of platinum, palladium and rhodium are often used to break down toxic carbon monoxide, instead of copper. But these metals are expensive and scarce, so researchers are looking for more resource-efficient alternatives.

“Copper can be an interesting candidate for oxidising carbon monoxide. The challenge is that copper has a tendency to change itself during the reaction, and we need to be able to measure what oxidation state a copper particle has when it is most active inside the catalyst. With our nanoreactor, which mimics a pore inside a real catalyst, this will now be possible,” says David Albinsson, Postdoctoral researcher at the Department of Physics at Chalmers and first author of two scientific articles recently published in Science Advances and Nature Communications.

Anyone who has seen an old copper rooftop or statue will recognise how the reddish-brown metal soon turns green after contact with the air and pollutants. A similar thing happens with the copper particles in the catalysts. It is therefore important to get them to work together in an effective way.

“What we have shown now is that the oxidation state of a particle can be dynamically affected by its nearest neighbours during the reaction. The hope therefore is that eventually we can save resources with the help of optimised neighbourly cooperation in a catalyst,” says Christoph Langhammer, Professor at the Department of Physics at Chalmers.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Filed Under: News, Science Tagged With: carbon, catalyst, catalysts, chalmers, copper, effective, inside, monoxide, nanoparticles, particles, physics, reaction, technology, university, work

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Live visitor count

288
Live visitors

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in