• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

A neural network learns when it should not be trusted

November 27, 2020 by Editor

Increasingly, artificial intelligence systems known as deep learning neural networks are used to inform decisions vital to human health and safety, such as in autonomous driving or medical diagnosis.

These networks are good at recognizing patterns in large, complex datasets to aid in decision-making. But how do we know they’re correct? Alexander Amini and his colleagues at MIT and Harvard University wanted to find out.

They’ve developed a quick way for a neural network to crunch data, and output not just a prediction but also the model’s confidence level based on the quality of the available data. The advance might save lives, as deep learning is already being deployed in the real world today.

A network’s level of certainty can be the difference between an autonomous vehicle determining that “it’s all clear to proceed through the intersection” and “it’s probably clear, so stop just in case.”

Current methods of uncertainty estimation for neural networks tend to be computationally expensive and relatively slow for split-second decisions. But Amini’s approach, dubbed “deep evidential regression,” accelerates the process and could lead to safer outcomes.

“We need the ability to not only have high-performance models, but also to understand when we cannot trust those models,” says Amini, a PhD student in Professor Daniela Rus’ group at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

“This idea is important and applicable broadly. It can be used to assess products that rely on learned models. By estimating the uncertainty of a learned model, we also learn how much error to expect from the model, and what missing data could improve the model,” says Rus.

Amini will present the research at next month’s NeurIPS conference, along with Rus, who is the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science, director of CSAIL, and deputy dean of research for the MIT Stephen A. Schwarzman College of Computing; and graduate students Wilko Schwarting of MIT and Ava Soleimany of MIT and Harvard.

Efficient uncertainty

After an up-and-down history, deep learning has demonstrated remarkable performance on a variety of tasks, in some cases even surpassing human accuracy. And nowadays, deep learning seems to go wherever computers go. It fuels search engine results, social media feeds, and facial recognition.

“We’ve had huge successes using deep learning,” says Amini. “Neural networks are really good at knowing the right answer 99 percent of the time.” But 99 percent won’t cut it when lives are on the line.

“One thing that has eluded researchers is the ability of these models to know and tell us when they might be wrong,” says Amini. “We really care about that 1 percent of the time, and how we can detect those situations reliably and efficiently.”

Neural networks can be massive, sometimes brimming with billions of parameters. So it can be a heavy computational lift just to get an answer, let alone a confidence level. Uncertainty analysis in neural networks isn’t new.

But previous approaches, stemming from Bayesian deep learning, have relied on running, or sampling, a neural network many times over to understand its confidence. That process takes time and memory, a luxury that might not exist in high-speed traffic.

The researchers devised a way to estimate uncertainty from only a single run of the neural network. They designed the network with bulked up output, producing not only a decision but also a new probabilistic distribution capturing the evidence in support of that decision.

These distributions, termed evidential distributions, directly capture the model’s confidence in its prediction. This includes any uncertainty present in the underlying input data, as well as in the model’s final decision. This distinction can signal whether uncertainty can be reduced by tweaking the neural network itself, or whether the input data are just noisy.

Confidence check

To put their approach to the test, the researchers started with a challenging computer vision task. They trained their neural network to analyze a monocular color image and estimate a depth value (i.e. distance from the camera lens) for each pixel.

An autonomous vehicle might use similar calculations to estimate its proximity to a pedestrian or to another vehicle, which is no simple task.

Their network’s performance was on par with previous state-of-the-art models, but it also gained the ability to estimate its own uncertainty. As the researchers had hoped, the network projected high uncertainty for pixels where it predicted the wrong depth.

“It was very calibrated to the errors that the network makes, which we believe was one of the most important things in judging the quality of a new uncertainty estimator,” Amini says.

To stress-test their calibration, the team also showed that the network projected higher uncertainty for “out-of-distribution” data — completely new types of images never encountered during training. After they trained the network on indoor home scenes, they fed it a batch of outdoor driving scenes. The network consistently warned that its responses to the novel outdoor scenes were uncertain.

The test highlighted the network’s ability to flag when users should not place full trust in its decisions. In these cases, “if this is a health care application, maybe we don’t trust the diagnosis that the model is giving, and instead seek a second opinion,” says Amini.

The network even knew when photos had been doctored, potentially hedging against data-manipulation attacks. In another trial, the researchers boosted adversarial noise levels in a batch of images they fed to the network.

The effect was subtle – barely perceptible to the human eye – but the network sniffed out those images, tagging its output with high levels of uncertainty. This ability to sound the alarm on falsified data could help detect and deter adversarial attacks, a growing concern in the age of deepfakes.

Deep evidential regression is “a simple and elegant approach that advances the field of uncertainty estimation, which is important for robotics and other real-world control systems,” says Raia Hadsell, an artificial intelligence researcher at DeepMind who was not involved with the work.

“This is done in a novel way that avoids some of the messy aspects of other approaches – for example, sampling or ensembles – which makes it not only elegant but also computationally more efficient – a winning combination.”

Deep evidential regression could enhance safety in AI-assisted decision making.

“We’re starting to see a lot more of these [neural network] models trickle out of the research lab and into the real world, into situations that are touching humans with potentially life-threatening consequences,” says Amini.

“Any user of the method, whether it’s a doctor or a person in the passenger seat of a vehicle, needs to be aware of any risk or uncertainty associated with that decision.”

He envisions the system not only quickly flagging uncertainty, but also using it to make more conservative decision making in risky scenarios like an autonomous vehicle approaching an intersection.

“Any field that is going to have deployable machine learning ultimately needs to have reliable uncertainty awareness,” he says.

Main image by MetsikGarden from Pixabay

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • New deep learning models: Fewer neurons, more intelligence
    46
    New deep learning models: Fewer neurons, more intelligenceArtificial intelligence has arrived in our everyday lives – from search engines to self-driving cars. This has to do with the enormous computing power that has become available in recent years.  But new results from AI research now show that simpler, smaller neural networks can be used to solve certain…
    Tags: learning, deep, network, neural, models, networks, model
  • Deep learning model classifies brain tumors with single MRI scan
    33
    Deep learning model classifies brain tumors with single MRI scanA team of researchers at Washington University School of Medicine have developed a deep learning model that is capable of classifying a brain tumor as one of six common types using a single 3D MRI scan, according to a study published in Radiology: Artificial Intelligence. “This is the first study…
    Tags: model, learning, data, deep, network, researchers, neural

Filed Under: Industry, Research Tagged With: amini, confidence, data, decision, deep, learning, models, network, networks, neural, uncertainty, vehicle

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Live visitor count

276
Live visitors

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in