• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

Miniscule robots of metal and plastic

December 2, 2020 by Editor

Robots so tiny that they can manoeuvre through our blood vessels and deliver medications to certain points in the body – researchers have been pursuing this goal for years.

Now, scientists at ETH Zurich have succeeded for the first time in building such “micromachines” out of metal and plastic, in which these two materials are interlocked as closely as links in a chain. This is possible thanks to a new manufacturing technique they have devised.

“Metals and polymers have different properties, and both materials offer certain advantages in building micromachines. Our goal was to benefit from all these properties simultaneously by combining the two,” explains Carlos Alcântara, formerly a doctoral student in Salvador Pané’s group at the Institute of Robotics and Intelligent Systems and one of the two lead authors of the paper.

As a rule, micromachines are powered from outside the body using magnetic fields, which means they must have magnetic metal parts installed. Polymers, in contrast, have the advantage that they can be used to construct soft, flexible components as well as parts that dissolve inside the body.

If medication is embedded in this kind of soluble polymer, it is possible to selectively supply active substances to certain points in the body.

High-tech production method

Underpinning the new manufacturing method is the expertise of ETH Professor Salvador Pané. For years, he has been working with a high-precision 3D printing technique that produces complex objects on the micrometre level, a technique known as 3D lithography.

The ETH scientists applied this method to produce a kind of mould or template for their micromachines. These templates have narrow grooves that serve as a “negative” and can be filled with the chosen materials.

Using electrochemical deposition, the scientists fill some of the grooves with metal and others with polymers before ultimately dissolving the template away with solvents.

“Our interdisciplinary group consists of electrical engineers, mechanical engineers, chemists, and materials scientists who all work closely together. That was the key to developing this method,” says Fabian Landers, a doctoral student in Pané’s group. He is the other lead author of the paper, which has been published in the journal Nature Communications.

Vehicle with tiny magnetic wheels

As a proof of principle for making micromachines by interlocking materials, the ETH scientists created various miniscule vehicles with plastic chassis and magnetic metal wheels powered by means of a rotating magnetic field.

Some of the vehicles can be propelled across a glass surface, while others – depending on the polymer used – can float in liquid or on a liquid surface.

The scientists are now planning to refine their two-component micromachines and experiment with other materials. In addition, they will attempt to create more complex shapes and machines, including some that can fold and unfold themselves.

Besides serving as “ferries” that distribute active substances, future applications of micromachines include treating aneurysms (bulges in blood vessels) or performing other surgical procedures.

Another research goal is to make stents (tube shaped vessel supports) that unfold themselves and can be positioned at a specific place in the body using magnetic fields.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Filed Under: Industry, News Tagged With: building, engineers, grooves, liquid, magnetic, manufacturing, materials, method, micromachines, miniscule, paper, parts, plastic, polymer, polymers, powered, properties, robots, scientists, student, substances, technique, template, uncategorized, unfold, vehicles, vessels, wheels

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2022 · News Pro on Genesis Framework · WordPress · Log in