• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

See further: Scientists achieve single-photon imaging over 200 km

April 9, 2021 by Editor

A research team led by Professor PAN Jianwei and Professor XU Feihu from University of Science and Technology of China achieved single-photon 3D imaging over 200 km using high-efficiency optical devices and a new noise-suppression technique, which is commented by the reviewer as an almost “heroic” attempt at single photon lidar imaging at very long distances.

Lidar imaging technology has enabled high precision 3D imaging of target scene in recent years. Single photon imaging lidar is an ideal technology for remote optical imaging with single-photon level sensitivity and picosecond resolution, yet its imaging range is strictly limited by the quadratically decreasing count of photons that echo back.

Researchers first optimized transceiver optics. The lidar system setup adopted a coaxial scanning design for the transmit and receive optical paths, which can align the transmitting and receiving spots more precisely and achieve higher-resolution imaging in comparison with tradition method.

To differentiate weak echo signal from strong background noise, the team developed a single-photon avalanche diode detector (SPAD) with a 19.3% detection efficiency and a low dark count rate (0.1kHz).

Further, researchers coated telescope to achieve high transmission at 1550 nm. All these improvements achieved higher collection efficiency than before.

Researchers also adopted an efficient temporal filtering technique for noise suppression. The technique can reduce the total number of noise photon counts to be about 0.4 KHz, which is at least 50 times smaller than previous works.

Experiment results showed that the system can achieve accurate 3D imaging at up to 201.5 km with single-photon sensitivity.

This work could provide enhanced methods for low-power, single-photon lidar for high-resolution active imaging and sensing over long ranges and open up a new road for the application of long-range target recognition and earth observation.

Main image: (a) Visible-band photograph of the mountains taken by a standard astronomical camera equipped with a telescope. The elevation is approximately 4500 m. (b) Schematic diagram of the experimental setup. (c) Photograph of the setup hardware, including the optical system (top and bottom left) and the electronic control system (bottom right). (d) View of the temporary laboratory where lidar was implemented at an altitude of 1770 m. Credit: LI Zhengping et al.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • Researchers harvest energy from radio waves to power wearable devices
    30
    Researchers harvest energy from radio waves to power wearable devicesFrom microwave ovens to Wi-Fi connections, the radio waves that permeate the environment are not just signals of energy consumed but are also sources of energy themselves. An international team of researchers, led by Huanyu "Larry" Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science…
    Tags: system, researchers, news, technology

Filed Under: News, Physics Tagged With: achieve, imaging, lidar, noise, optical, photon, researchers, setup, single-photon, system, technique, technology

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Live visitor count

324
Live visitors

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in