• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

Society is not ready to make human brains

April 15, 2021 by Editor

Stem cell research has allowed medicine to go places that were once science fiction. Using stem cells, scientists have manufactured heart cells, brain cells and other cell types that they are now transplanting into patients as a form of cell therapy.

Eventually, the field anticipates the same will be possible with organs. A new paper written by a group of international researchers led by Tsutomu Sawai, an assistant professor at the Kyoto University Institute for the Advanced Study of Human Biology (ASHBi) and the Center for iPS Cell Research and Application (CiRA), explains the future ethical implications of this research with regards to brain organoids, a laboratory-made structure that is designed to grow and behave like the brain.

In just over ten years, a new word has entered the lexicon of stem cell science. “Organoids” describe organ-like structures that imitate how organs form in the body.

By recapitulating normal development, organoids have proven to be invaluable tools for understanding not only how organs grow, but also how diseases develop. Organoids have been reported for an assortment of organs, including the liver, kidney and, most controversially, the brain, along with others.

The brain is considered the source of our consciousness. Therefore, if brain organoids do truly mimic the brain, they too should develop consciousness, which, as the paper states, brings all sorts of moral implications.

“Consciousness is a very difficult property to define. We do not have very good experimental techniques that confirm consciousness. But even if we cannot prove consciousness, we should set guidelines, because scientific advancements demand it,” said Sawai, who has spent several years writing about the ethics of brain organoid research.

Brain organoids have led to deep questions about consciousness. With some people imagining a future where our brains are uploaded and kept on the cloud well after our bodies die, organoids bring an opportunity to test consciousness and morality in artificial environments.

Ethicists have broken consciousness down into many types. Phenomenal consciousness assumes the awareness of pain, pleasure and distress.

Sawai and his colleagues argue that even though restraints on experiments using brain organoids would be needed, phenomenal consciousness would not outright prohibit experiments, since animals commonly used in science, such as rodents and monkeys, also display phenomenal consciousness. Self-consciousness would add to the ethical conflicts, since this status bestows a higher morality.

However, Sawai said there is a more pressing issue.

“One of the biggest problems is transplants. Should we put brain organoids into animals to observe how the brain behaves?”

Stem cell research has presented the possibility of growing xeno-organs. For example, researchers have had profound success at growing mouse pancreas in rat and vice versa, and similar research is expected to lead to human pancreas being grown in pigs.

In principle, these animals would become organ farms that can be harvested and circumvent the long wait time for organ donors.

While growing whole human brains inside animals is not under any serious consideration, transplanting brain organoids could give crucial insight on how diseases like dementia or schizophrenia form and treatments to cure them.

“This is still too futuristic, but that does not mean we should wait to decide on ethical guidelines. The concern is not so much a biological humanization of the animal, which can happen with any organoid, but a moral humanization, which is exclusive to the brain,” said Sawai.

Other concerns, he added, include enhanced abilities – think Planet of the Apes. Furthermore, if the animal developed humanized traits, then treating it sub-humanely would violate human dignity, a core tenet of ethical practice.

The paper notes that some people do not consider these outcomes unethical. Enhanced abilities without a change in self-consciousness is equivalent to using a higher animal in experiments, like shifting from mouse to monkey. And a change in dignity does not mean a change to human dignity. Instead, the change could result in a new type of dignity.

Regardless, the authors believe that the possibility of unintended connections between the transplanted brain organoid to the animal brain deserves precautionary consideration.

The biggest concern regarding brain organoid transplantation, however, does not involve animals. There is good reason to believe that as research proceeds, the future will bring the possibility of transplanting these structures into patients who suffered from sudden trauma, stroke or other injury to the brain.

There are already a number of clinical trials that involve the transplantation of brain cells as a cell therapy in patients with such injury or neurodegenerative diseases. Sawai said that the ethics behind these therapies could act as a paradigm for brain organoids.

“Cell transplantations change the way brain cells function. If something goes wrong, we can’t just take them out and start over. But right now, cell transplantation is usually in just one location. Brain organoids would be expected to interact more deeply with the brain, risking more unexpected changes,” he believes.

In the end of 2018, the stem cell field was in uproar when a scientist announced that he had genetically engineered a human embryo that went to term. The actions of the scientist were in clear violation of international frameworks and resulted in his prison sentence.

To avoid a similar controversy and possible loss of public confidence in brain organoid research, the paper states explicitly that all stakeholders, including ethicists, policy-makers and scientists need to remain in constant communication about progress in this field.

“We need to regularly communicate with each other on scientific facts and their ethical, legal and social implications,” said Sawai.

Main image: A group of researchers led by ASHBi and CiRA Assistant Professor Tsutomu Sawai explains the ethical issues regarding brain organoid research. Credit: Kyoto University / viktoria – stock.adobe.com.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • There's a man in the moon: Why our brains see human faces everywhere
    39
    There's a man in the moon: Why our brains see human faces everywhereIt's so commonplace we barely give it a second thought, but human brains seem hardwired to see human faces where there are none – in objects as varied as the moon, toys, plastic bottles, tree trunks and vacuum cleaners. Some have even seen an imagined Jesus in cheese on toast.…
    Tags: human, brain, features
  • Neuroscientists build ‘ultra detailed map’ of brain motor cortex, from mice to monkeys to humans
    36
    Neuroscientists build ‘ultra detailed map’ of brain motor cortex, from mice to monkeys to humansHundreds of neuroscientists have built a “parts list” of the motor cortex, laying groundwork to map the whole brain and better understand brain diseases. Before you read any further, bring your hand to your forehead. It probably didn’t feel like much, but that simple kind of motion required the concerted…
    Tags: brain, cell
  • What makes us human? The answer may be found in overlooked DNA
    30
    What makes us human? The answer may be found in overlooked DNAOur DNA is very similar to that of the chimpanzee, which in evolutionary terms is our closest living relative. Stem cell researchers at Lund University in Sweden have now found a previously overlooked part of our DNA, so-called non-coded DNA, that appears to contribute to a difference which, despite all…
    Tags: cell, brain, human
  • Intelligent battery cell production
    30
    Intelligent battery cell productionThe Cluster of Competence for Intelligent Battery Cell Production (InZePro), coordinated by Karlsruhe Institute of Technology (KIT), is aimed at holistically optimizing production systems and making them more flexible in terms of quantity, format, material, and technology. For this purpose, cross-process, data-driven optimization approaches and Industry 4.0 solutions are developed.…
    Tags: cell, features

Filed Under: Brain, Features Tagged With: brain, cell, consciousness, human, organoids, sawai

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Live visitor count

342
Live visitors

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in