• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

New tech builds ultralow-loss integrated photonic circuits

April 21, 2021 by Editor

Encoding information into light, and transmitting it through optical fibers lies at the core of optical communications. With an incredibly low loss of 0.2 dB/km, optical fibers made from silica have laid the foundations of today’s global telecommunication networks and our information society.

Such ultralow optical loss is equally essential for integrated photonics, which enable the synthesis, processing and detection of optical signals using on-chip waveguides.

Today, a number of innovative technologies are based on integrated photonics, including semiconductor lasers, modulators, and photodetectors, and are used extensively in data centers, communications, sensing and computing.

Integrated photonic chips are usually made from silicon that is abundant and has good optical properties. But silicon can’t do everything we need in integrated photonics, so new material platforms have emerged.

One of these is silicon nitride (Si3N4), whose exceptionally low optical loss (orders of magnitude lower than that of silicon), has made it the material of choice for applications for which low loss is critical, such as narrow-linewidth lasers, photonic delay lines, and nonlinear photonics.

Now, scientists in the group of Professor Tobias J. Kippenberg at EPFL’s School of Basic Sciences have developed a new technology for building silicon nitride integrated photonic circuits with record low optical losses and small footprints. The work is published in Nature Communications.

Combining nanofabrication and material science, the technology is based on the photonic Damascene process developed at EPFL. Using this process, the team made integrated circuits of optical losses of only 1 dB/m, a record value for any nonlinear integrated photonic material.

Such low loss significantly reduces the power budget for building chip-scale optical frequency combs (“microcombs”), used in applications like coherent optical transceivers, low-noise microwave synthesizers, LiDAR, neuromorphic computing, and even optical atomic clocks.

The team used the new technology to develop meter-long waveguides on 5×5 mm2 chips and high-quality-factor microresonators. They also report high fabrication yield, which is essential for scaling up to industrial production.

“These chip devices have already been used for parametric optical amplifiers, narrow-linewidth lasers and chip-scale frequency combs”, says Dr. Junqiu Liu who led the fabrication at EPFL’s Center of MicroNanoTechnology (CMi).

“We are also looking forward to seeing our technology being used for emerging applications such as coherent LiDAR, photonic neural networks, and quantum computing.”

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Filed Under: Engineering, Technology Tagged With: applications, circuits, communications, computing, engineering, integrated, lasers, loss, low, material, optical, photonic, photonics, silicon, technology

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • StayLinked launches supply chain integration platform ‘Evolve’
    StayLinked launches supply chain integration platform ‘Evolve’
  • Brain’s immune cells promising cellular target for therapeutics
    Brain’s immune cells promising cellular target for therapeutics
  • Relaxed through pregnancy, better stress management is beneficial to newborns
    Relaxed through pregnancy, better stress management is beneficial to newborns
  • Using waste heat to power an environmentally sustainable future
    Using waste heat to power an environmentally sustainable future
  • Empathy may be in the eye of the beholder
    Empathy may be in the eye of the beholder
  • Columbia Engineering team builds first hacker-resistant cloud software system
    Columbia Engineering team builds first hacker-resistant cloud software system
  • Study: Countering hate on social media
    Study: Countering hate on social media
  • Child marriage is ‘legal and persists across Canada’
    Child marriage is ‘legal and persists across Canada’
  • US outlines strategies for promoting American seafood
    US outlines strategies for promoting American seafood
  • No more needles for diagnostic tests?
    No more needles for diagnostic tests?

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2022 · News Pro on Genesis Framework · WordPress · Log in