• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

Solid-state batteries line up for better performance

May 21, 2021 by Editor

Solid-state batteries pack a lot of energy into a small space, but their electrodes are not good at keeping in touch with their electrolytes.

Liquid electrolytes reach every nook and cranny of an electrode to spark energy, but liquids take up space without storing energy and fail over time.

Researchers are now putting solid electrolytes in touch with electrodes made of strategically arranged materials – at the atomic level – and the results are helping drive better solid-state battery technologies.

A new study, led by University of Illinois Urbana-Champaign materials science and engineering professor Paul Braun, postdoctoral research associate Beniamin Zahiri, and Xerion Advanced Battery Corp director of research and development John Cook, demonstrates how control over the atomic alignment of solid materials can improve the cathode-solid electrolyte interface and stability in solid-state batteries.

The results are published in the journal Nature Materials.

“With batteries, it’s not just materials that are important, but also how the atoms on the surfaces of those materials are arranged,” Zahiri said.

“Currently, solid-state battery electrodes contain materials with a large diversity of surface atom arrangements. This leads to a seemingly infinite number of electrode-solid electrolyte contact interface possibilities, all with different levels of chemical reactivity.

“We are interested in finding which arrangements lead to practical improvements in battery cycle life, energy density and power.”

The researchers said an electrolyte’s stability controls how many charging and discharging cycles a battery can handle before it starts to lose power. Because of this, scientists are in a race to find the most stable electrolyte materials.

“In the rush to find stable solid electrolyte materials, developers have sort of lost sight of the importance of what is happening in that very thin interface between electrolyte and electrode,” Zahiri said.

“But the stability of the electrolyte will not matter if the connection between it and the electrodes cannot be evaluated in an efficient way.”

In the lab, the team built electrodes containing sodium and lithium ions with specific atomic arrangements. They found correlations between battery performance and interface atomic arrangement in both the lithium- and sodium-based solid-state batteries.

They also discovered that minimizing the interface surface area and controlling the electrodes’ atomic alignment is key to both understanding the nature of interface instabilities and improving cell performance.

“This is a new paradigm for how to evaluate all the important solid electrolytes available today,” Cook said. “Before this, we were largely just guessing what electrode-solid electrolyte interface structures gave the best performance, but now we can test this and find the best combination of materials and atomic orientations.”

As demonstrated by co-author mechanical science and engineering professor Elif Ertekin and her group, having this level of control gave the researchers the information needed to run atomic simulations that they hypothesize will lead to even better electrolyte materials in the future, the researchers said.

“We think this will teach us a lot about how to investigate emerging solid electronics,” Braun said.

“We are not trying to invent new solid electrolytes; the materials world is doing a great job with that already. Our methodology will allow others to precisely measure the interfacial properties of their new materials, something that has otherwise been very difficult to determine.”

Main image: Illustration of a conventional solid-state battery and the team’s new high-performance design that contains tailored electrode-electrolyte interfaces. Credit: Graphic courtesy Beniamin Zahiri and Paul Braun.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • Finding key to low-cost, fast production of solid-state batteries for electric vehicles
    36
    Finding key to low-cost, fast production of solid-state batteries for electric vehiclesConventional Li-ion manufacturing tools drive better fabrication options for lighter, safer, more energy-dense batteries A new fabrication technique could allow solid-state automotive lithium-ion batteries to adopt nonflammable ceramic electrolytes using the same production processes as in batteries made with conventional liquid electrolytes. The melt-infiltration technology developed by materials science researchers…
    Tags: batteries, electrolytes, materials, battery, solid-state, electrolyte, electrodes, solid, will, news
  • New storage battery more efficient and heat-resistant
    33
    New storage battery more efficient and heat-resistantAt the beginning of 2020, for the first time ever, renewable energy was able to cover more than half of the electricity consumed in Germany. But the more important renewable energy sources become, the more urgent is the need to store the electricity produced in this way. Green energy could…
    Tags: energy, batteries, battery, electrolytes, electrolyte, researchers, news
  • New material enables the usage of ‘calcium’ for batteries
    33
    New material enables the usage of ‘calcium’ for batteriesScientists from Tohoku University have developed a new fluorine-free calcium (Ca) electrolyte based on a hydrogen (monocarborane) cluster that could potentially realize rechargeable Ca batteries. The researchers say the new material, achieved by designing the coordination structure of Ca cation with a weakly coordinating anion and mixed solvents, shows markedly…
    Tags: batteries, electrolyte, stability, materials, battery, electrolytes, energy, news
  • Better batteries start with basics – and a big computer
    30
    Better batteries start with basics – and a big computerTo understand the fundamental properties of an industrial solvent, chemists with the University of Cincinnati turned to a supercomputer. UC chemistry professor and department head Thomas Beck and UC graduate student Andrew Eisenhart ran quantum simulations to understand glycerol carbonate, a compound used in biodiesel and as a common solvent.…
    Tags: energy, better, batteries, battery, chemistry, atomic, will, performance, news

Filed Under: Chemistry, News Tagged With: arrangements, atomic, batteries, battery, better, electrodes, electrolyte, electrolytes, energy, find, interface, materials, performance, researchers, solid, solid-state, stability, zahiri

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2022 · News Pro on Genesis Framework · WordPress · Log in