• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Home
  • About
    • Contact
    • Privacy
    • Terms of use
  • Subscribe
  • Your Membership

Science and Technology News

Dedicated to the wonder of discovery

  • News
  • Features
  • Life
  • Health
  • Research
  • Engineering

The free-energy principle explains the brain

January 17, 2022 by Editor Leave a Comment

The Riken Center for Brain Science (CBS) in Japan, along with colleagues, has shown that the free-energy principle can explain how neural networks are optimized for efficiency.

Published in the scientific journal Communications Biology, the study first shows how the free-energy principle is the basis for any neural network that minimizes energy cost. Then, as proof-of-concept, it shows how an energy minimizing neural network can solve mazes.

This finding will be useful for analyzing impaired brain function in thought disorders as well as for generating optimized neural networks for artificial intelligences.

Biological optimization is a natural process that makes our bodies and behavior as efficient as possible. A behavioral example can be seen in the transition that cats make from running to galloping.

Far from being random, the switch occurs precisely at the speed when the amount of energy it takes to gallop becomes less that it takes to run. In the brain, neural networks are optimized to allow efficient control of behavior and transmission of information, while still maintaining the ability to adapt and reconfigure to changing environments.

As with the simple cost/benefit calculation that can predict the speed that a cat will begin to gallop, researchers at Riken CBS are trying to discover the basic mathematical principles that underly how neural networks self-optimize.

The free-energy principle follows a concept called Bayesian inference, which is the key. In this system, an agent is continually updated by new incoming sensory data, as well its own past outputs, or decisions.

The researchers compared the free-energy principle with well-established rules that control how the strength of neural connections within a network can be altered by changes in sensory input.

“We were able to demonstrate that standard neural networks, which feature delayed modulation of Hebbian plasticity, perform planning and adaptive behavioral control by taking their previous ‘decisions’ into account,” says first author and Unit Leader Takuya Isomura.

“Importantly, they do so the same way that they would when following the free-energy principle.”

Once they established that neural networks theoretically follow the free-energy principle, they tested the theory using simulations. The neural networks self-organized by changing the strength of their neural connections and associating past decisions with future outcomes.

In this case, the neural networks can be viewed as being governed by the free-energy principle, which allowed it to learn the correct route through a maze through trial and error in a statistically optimal manner.

These findings point toward a set of universal mathematical rules that describe how neural networks self-optimize.

As Isomura explains, “Our findings guarantee that an arbitrary neural network can be cast as an agent that obeys the free-energy principle, providing a universal characterization for the brain.”

These rules, along with the researchers’ new reverse engineering technique, can be used to study neural networks for decision-making in people with thought disorders such as schizophrenia and predict the aspects of their neural networks that have been altered.

Another practical use for these universal mathematical rules could be in the field of artificial intelligence, especially those that designers hope will be able to efficiently learn, predict, plan, and make decisions.

“Our theory can dramatically reduce the complexity of designing self-learning neuromorphic hardware to perform various types of tasks, which will be important for a next-generation artificial intelligence,” says Isomura.

Share this:

  • Twitter
  • Facebook
  • Print
  • LinkedIn
  • Reddit
  • Pinterest
  • WhatsApp

Related Posts

  • New deep learning models: Fewer neurons, more intelligence
    34
    New deep learning models: Fewer neurons, more intelligenceArtificial intelligence has arrived in our everyday lives – from search engines to self-driving cars. This has to do with the enormous computing power that has become available in recent years.  But new results from AI research now show that simpler, smaller neural networks can be used to solve certain…
    Tags: network, neural, networks, news
  • Keeping weight off is up to your brain, not just willpower, Ben-Gurion U researchers discover
    31
    Keeping weight off is up to your brain, not just willpower, Ben-Gurion U researchers discoverWhat if an MRI scan could determine whether a weight loss program was likely to be effective? Ben-Gurion University of the Negev (BGU) researchers have discovered a neural subnetwork of connected regions between the brain and gastric basal electric frequency that correlates with future weight loss based on connectivity patterns.…
    Tags: brain, neural, news

Filed Under: Brain, News Tagged With: brain, decisions, free-energy, network, networks, neural, principle, rules

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Latest news

  • AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Most read

  • AutoX expands robotaxi operation zone to 1,000 sq km
    AutoX expands robotaxi operation zone to 1,000 sq km
  • Schaeffler acquires precision gearbox maker Melior Motion 
    Schaeffler acquires precision gearbox maker Melior Motion 
  • Sunflower Labs provides its security drone system to range of new customers
    Sunflower Labs provides its security drone system to range of new customers
  • Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
    Monarch Tractor showcases ‘world’s first fully electric, driver-optional tractor’
  • Robot performs laparoscopic surgery without guiding hand of a human
    Robot performs laparoscopic surgery without guiding hand of a human
  • Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
    Amazon owner’s Blue Origin to buy asteroid mining company Honeybee Robotics
  • Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
    Sydney scientists achieve ‘99 per cent accuracy’ for quantum computing in silicon
  • Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
    Ceremorphic unveils plans to build supercomputer infrastructure on 5 nanometer chips
  • Motion capture is guiding the next generation of extraterrestrial robots
    Motion capture is guiding the next generation of extraterrestrial robots
  • Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing
    Baidu’s autonomous electric carmaker Jidu raises $400 million in Series A financing

Live visitor count

303
Live visitors

Secondary Sidebar

Categories

  • Agriculture
  • Archaeology
  • Astronomy
  • Biology
  • Brain
  • Chemistry
  • Computer games
  • Computing
  • Digital Economy
  • Education
  • Energy
  • Engineering
  • Environment
  • Features
  • Genetics
  • Health
  • History
  • Industry
  • Life
  • Nature
  • News
  • Opinion
  • Physics
  • Research
  • Science
  • Social
  • Space
  • Technology
  • Uncategorized
  • Universe

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in